Identification and Control of Phosphorus Loading from Industrial and Commercial Sources

POTW Special Meeting

DuPage River Salt Creek Workgroup (DRSCW)

January 28, 2016

Overview

- NPDES Special Condition Requirement
- First Steps/Sampling/Roadmap
- Preliminary Findings Sources, Loadings, Current Removals
- Local Limit vs. Surcharge ???
- Industrial Treatment Options
- Pollution Prevention/BMP Options
- Developing the PDOP Response
- Conclusion

NPDES Special Condition Requirement

- Development of a Phosphorus Discharge Optimization Plan (PDOP)
- Plan due within 24 months (to be implemented within 36)
- Shall include evaluation of both limiting influent sources and "tweaking" current operations to maximize removals.
- Annual reporting

NPDES Special Condition Requirement – Cont.

- Part (a) WWTP Influent Reduction Measures
 - Evaluate the Phosphorus reduction potential of Users
 - Determine which sources have the greatest opportunity for reducing Phosphorus
 - Waste minimization and water conservation plans
 - Evaluate implementation of local limits
- Part (b) WWTP Effluent Reduction Measures

First Steps

- Do I have an influent problem with Total -P?
- Existing Loadings vs. Expected Domestic Background Contribution
- Sampling Plan
 - Influent/Effluent
 - Background
 - Industrial (look at before and after treatment)
 - Commercial/Restaurants
- Identify Sources/Opportunities
- Wastewater Survey Data

Loadings – A.J. LaRocca Plant

Date	Influent P (mg/L)	Effluent P (mg/L)	Removal Rate
1/1/14	4.16	2.79	32.9%
2/1/14	3.39	2.17	36.0%
3/1/14	5.17	3.50	32.3%
4/1/14	2.74	2.05	25.2%
5/1/14	2.74	2.22	19.0%
6/1/14	4.01	3.62	9.7%
7/1/14	4.89	3.19	34.8%
8/1/14	4.73	3.41	27.9%
9/1/14	7.63	1.08	85.8%
10/1/14	3.78	3.52	6.9%
11/1/14	5.18	3.94	23.9%
12/1/14	5.44	1.35	75.2%

Loadings – North Plant

Date	Influent P (mg/L)	Effluent P (mg/L)	Removal Rate
1/1/14	4.71	3.08	34.6%
2/1/14	4.68	3.86	17.5%
3/1/14	4.58	2.8	38.9%
4/1/14	4.47	2.17	51.5%
5/1/14	3.08	2.43	21.1%
6/1/14	4.09	3.16	22.7%
7/1/14	7.43	4.14	44.3%
8/1/14	4.32	3.44	20.4%
9/1/14	2.67	2.71	-1.5%
10/1/14	5.38	3.36	37.5%
11/1/14	5.67	4.01	29.3%
12/1/14	5.49	1.49	72.9%

Loading Summary

PLANT	MIN INFLUENT	MAX INFLUENT	AVG	AVG REMOVAL
AJ LAROCCA	2.74 mg/L	7.63 mg/L	4.73 mg/L	38.1 %
NORTH	2.67 mg/L	7.43 mg/L	4.92 mg/L	35.5 %

Phosphorus Results

Source	Range	Average
Domestic Background	0.85 – 2.66 mg/L	1.87 mg/L
Industrial/Commercial Back.	0.02 - 16.0 mg/L	6.29 mg/L
Restaurants	N/A	5.00 mg/L
Permitted Users	0.20 - 46.9 mg/L	7.7 mg/L

Loading Summary – Mass Allocation

Sources*

- Car/Truck Washing
- Metal Cleaning
- Dairy
- Food Processing
- Meat Processing
- Metal Finishing
- Restaurants

* Taken from University of Minnesota Study, 2002

Sources* - Cont.

<u>TYPE</u>	AVG T-Phosphate	RANGE
Hospitals	4.5 mg/L	0.50 - 9.7 mg/L
Truck Wash	7.9 mg/L	0.1 - 34.2 mg/L
Dry Cleaners	25.7 mg/L	0.1 - 29.7 mg/L
Laundries	13.2 mg/L	4.4 - 18.4 mg/L

^{*} Taken from USEPA Region V Local Limit Guidance, July 2007

Sources – Cont.

- 70% of the non-agricultural Phosphorus is used to make Phosphoric acid
- The remaining 30% are for things like match tips and flares, detergents
- Most household products have gone "Phosphate Free", however, commercial and industrial grade products may still contain significant levels

Industrial Sources

Industry Type	Treatment Type	Total-P Effluent Concentration
Electro-polishing	pH, Filtration	0.5 mg/L
Textile Dyes/Printing	Sediment Removal	1.9 mg/L
Metal Finishing, De-Burring	pH, Filtration, Floc	1.4 mg/L
Soap/Cleaner Mfg	(None)	5.2 mg/L
Circuit Boards	pH, Filtration, Floc	0.2 mg/L
Electro-plating	pH, Floc, Micro Filtration	1.8 mg/L
Ink/Pigment Mfg	Sediment Removal, Skimmers	15.8 mg/L
Paint/Coatings Mfg	Sediment Removal, Filtration	26.9 mg/L
Food – Meat Based	Grease Separator, Solids Removal	15.0 mg/L
Electro-plating	pH, Filtration, Floc	0.2 mg/L

Industrial Sources - Cont.

Industry Type	Treatment Type	Total-P Effluent Concentration
Phosphating/Powder Coating	Settling, pH	46.9 mg/L
Electro-plating	pH, Filtration, Floc	2.6 mg/L
Printing (Aqueous)	pH, Filtration, Floc	0.5 mg/L
Truck Wash	Sediment Removal	20.9 mg/L
Electro-plating	pH, Filtration, Floc	2.0 mg/L

Pre-Treatment Removals - Industrial

Industry Type	Treatment Type	Raw Waste	Post Treatment
Food - Meat Based	pH, DAF, Grease Separation, Floc, Polymer, Filtration	11.7 mg/L	7.5 mg/L
Food - Bakery	pH, DAF, Grease Separation, Floc, Polymer, Filtration	1.2 mg/L	6.31 mg/L
Mfg - Phosphating, E-Coating, Plating	pH, Floc, Polymers, Sedimentation	115.7 mg/L	5.2 mg/L
Mfg - Phosphating, Powder Coating, E-Coating	pH, Floc, Polymers, Sedimentation	140.0 mg/L	3.2 mg/L

Pre-Treatment Removals-Restaurants (Total P)

TYPE	RAW WASTE	TRAP EFFLUENT*
Mexican	3.77 mg/L	0.88 mg/L

48.9 mg/L

BBQ

13.0 mg/L

^{*}Approximate 75% reduction across conventional grease trap

Local Limit Evaluation

Criteria	AJ LaRocca WWTP	North WWTP
Daily Average Flow (DAF)	2.0 MGD	3.5 MGD
Domestic Flow	1.5 MGD	3.0 MGD
Effluent Total-P Limit	1.0 mg/L	1.0 mg/L
Effluent Mass Limit	16.7 lbs./day	29.2 lbs./day
Plant Removal Rate	88% (Lit.)	88% (Lit.)
Influent Mass Limit	139.0 lbs./day	243.3 lbs./day
Background	-25.0 lbs./day	-50.0 lbs./day
Allowed to Industry	114.0 lbs./day	193.2 lbs./day
Safety/Growth Factor	-20%	-20%
Local Limit	21.8 mg/L	46.3 mg/L

Surcharge Calculation

Criteria	AJ LaRocca WWTP	North WWTP
Capital Cost	\$4.8 Million	\$2.8 Million
Annual O&M Cost	\$58,000	\$75,000
Total Cost (20 yr. Cycle)	\$6.0 Million	\$4.4 Million
Total Pounds P Treated	60 lbs./day	105 lbs./day
Annual Pounds	21,900	38,350
20 year Total	438,000	767,000
Cost/Pound	\$13.70	\$5.73

Pre-Treatment Options

- Conventional Pre-Treatment for heavy metals, solids, grease, and other conventional pollutants significantly reduces the level of Phosphorus (70 -90%)
- Standard treatments with Ferric Chloride and alum, similar to Municipal Chemical treatment strategies, can reduce levels below 2 mg/L.
- Additional removals require a second, high dose of ferric or alum and membrane or micro filtration. Levels below 1 mg/L can be achieved

Best Management Practices (BMP's)

- Product Substitution
- Streamlining Rule 2007
- Permit Requirements
- Community Outreach
- Industrial Workshops Pilot Projects
- Recognize Limitations (Meat Products)

BMP Example - Phosphating

- New technologies in development driven by regulations
- Sol-Gel and Transition Metal Coatings
- May require process modification
- Loss of cleaning power of Phosphate
- High Risk to Implement (Amnesty Programs)

PDOP Components

- 1. Evaluation of Headworks Loadings
- 2. Source Identification/Sampling Results
- 3. Strategies to Reduce Phosphorus Industrial, Commercial, Community Outreach
- 4. Short Term Implementation of Voluntary Reductions with BMP's
- 5. Long Term Implementation of Local Limits and Surcharge Fees as Deterrent to Discharge
- 6. Ongoing Testing and Reporting to Document Improvements

Conclusion

- There is time to prepare and perform analysis for reporting
- Short term opportunities easy to implement
- Development of Local Limits and Surcharging will probably occur with installation of Phosphorus treatment 7-10 years in future
- Annual reporting can demonstrate improvements

Questions?

Rick Federighi
Village of Addison - Public Works
Rfederighi@Addison-il.org
(630) 620-2020